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1 Introduction

Spider: Species Identity and Evolution in R, is an R package implementing a
number of the most useful analyses for DNA barcoding studies and other re-
search into species delimitation and speciation. It has been developed primarily
by staff and students in the Department of Ecology at Lincoln University, and
was first released in 2011. The package seeks to provide a number of analyses
that the developers have found useful in their own research and hadn’t been
implemented in other R packages.

This document is a tutorial on the use of some of the functions implemented
in spider, and offers a guide to the interpretation of its output. It is intended
to be useful for the beginner, so users who are familiar with R and Ape are
encouraged to skip the first few sections. This tutorial does not discuss the basic
R syntax and data structures in detail (with a few exceptions), and the reader
is referred to other manuals1 for this information.

1.1 Conventions

1.1.1 Species

The term “species” will be used a lot in this document. The creators of the pack-
age are biologists, mostly working with DNA sequences in ecology, taxonomy
and systematics, and so this term is naturally the one we feel most comfort-
able using. However, in the context of spider it is important to remember

1The freely available An Introduction to R, Using R for data analysis and graphics and R
for beginners are particularly recommended
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that “species” are just an identifying tag for our group of interest, and is not
necessarily limited to biological species—it can refer to any population, group,
lineage or cluster of interest.

1.1.2 R commands

Commands to be typed into the R console are typeset in blue typewriter

font, while R’s output is typeset in red typewriter font. Functions, objects
and classes mentioned in the text are typeset in black typewriter font.

1.1.3 Vectors

Character vectors will be discussed a lot, particularly in “Species vectors” (Sec-
tion 4), so I will briefly discuss them here. Vectors form the basic R data
structure, created in the following way:

(x <- c(1, 4, 6, 7, 2))

[1] 1 4 6 7 2

(y <- c("A", "B", "C", "F", "G"))

[1] "A" "B" "C" "F" "G"

There are many different modes of vectors, however here we will only deal with
two of them: numeric and character. The first example above is a numeric
vector—funnily enough, it’s made up of numbers. The second is a character
vector. Numbers and letters can be mixed, but the result will be a character
vector. The parts of a vector will be called “elements” here, such that the first
element of x is 1, while that of y is “A”. The 2nd is 4 and “B” respectively, and
the 4th is 7 and “F”.

1.1.4 Lists

Spider uses lists a lot. Lists are very useful in that they are able to store in
one big object, lots of other little objects bits of different classes, modes and
lengths. In addition, the lapply() function makes it easy to do the same thing
to each element within a list. To demonstrate the structure of lists:

testList <- list(aa = 1:5, bb = LETTERS[1:10], cc = matrix(1:4, 2))

testList

$aa

[1] 1 2 3 4 5

$bb
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[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

$cc

[,1] [,2]

[1,] 1 3

[2,] 2 4

testList contains three quite different objects, all happily coexisting. These
objects can be indexed in number of ways:

testList$aa

[1] 1 2 3 4 5

testList[[1]]

[1] 1 2 3 4 5

testList[[2]][3:5]

[1] "C" "D" "E"

testList$cc[2,]

[1] 2 4

1.1.5 Getting help

R is blessed in having a large community of users that willingly offer help free of
charge through avenues such as mailing lists and Stack Overflow. HOWEVER!
Before even thinking of asking a question there, try looking up the documen-
tation that comes with the program. Simply put a question mark before the
function name you have a problem with and a wealth of information will appear.

?read.dna

?sppVector

R help pages have a justified reputation for being dense and overwhelming at
first glance, but keep trying because most of the time (particularly for the base
packages) the answer is in there. It’s jolly difficult writing help pages, and our
attempts at it renew our appreciation for what others have produced.

If any of spider’s help pages fail to live up to standards, please send us an
email, preferably with suggestions, and we’ll update it accordingly.

2 Obtaining spider

Spider is a package of the statistical programming environment R, which is
available for all computing platforms from the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org). A stable version of spider is also
available on CRAN, and can be downloaded from within R while connected to
the internet by entering the following command at the prompt:
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install.packages("spider")

In addition to the stable version on CRAN, a development version is available
at R-Forge (http://spider.r-forge.r-project.org/). This version can be installed
from within R by using the command:

install.packages("spider", repos="http://R-Forge.R-project.org")

Spider requires the installation of the packages Ape (Paradis et al., 2004) and
Pegas (Paradis, 2010) which provide the primary data structures for working
with DNA sequences and phylogenetic trees. If these packages are not already
on your system, they will automatically be installed when the commands above
have been run.

3 Loading data

3.1 Loading spider

Once you have installed spider, load the package using the following command:

library(spider)

As well as spider, this command will load the packages Ape, Pegas and the
required packages for Pegas, Adegenet (Jombart, 2008) and Mass (Venables
& Ripley, 2002).

3.2 Bundled datasets

Once the packages are loaded, you are ready to go! It’s now time to get some
data to play with. Included in spider are two datasets including sequences from
(appropriately enough) two New Zealand spider genera, the wolf spider genus
Anoteropsis and the nurseryweb spider genus Dolomedes. These datasets have
been published as Vink & Paterson (2003) and Vink & Dupérré (2010). To load
up these datasets, simply type:

data(anoteropsis)

data(dolomedes)

More information about these datasets can be discovered by having a look at
these objects:

anoteropsis
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33 DNA sequences in binary format stored in a matrix.

All sequences of same length: 409

Labels: Artoria_flavimanus Artoria_separata Anoteropsis_adumbrata_CO

Anoteropsis_adumbrata_BP Anoteropsis_aerescens_MK Anoteropsis_aerescens_TK ...

Base composition:

a c g t

0.261 0.135 0.159 0.445

class(anoteropsis)

[1] "DNAbin"

dolomedes

37 DNA sequences in binary format stored in a matrix.

All sequences of same length: 850

Labels: minorD003 minorD031 minorD026 minorD030D056 minorD006

minorD014D017D042D043 ...

Base composition:

a c g t

0.254 0.123 0.181 0.443

class(dolomedes)

[1] "DNAbin"

This tells us a whole bunch of stuff. Starting from the top, the first line tells
us how many sequences are in the alignment, and if these sequences are stored
as a list or as a matrix. This latter piece of information is handy to know if
we want to manipulate them further down the track. The next line tells us the
length of the sequences, including the minimum, maximum and average if the
sequences are of different lengths. The third line shows the names of the first
few sequences to give us an idea of the naming scheme, and finally the base
composition of the alignment is given.

3.3 Loading your own

While the above datasets give us something to work on for the rest of the
tutorial, what is a lot more interesting is working on your own datasets. To load
your own datasets into spider, use the function read.dna() supplied by Ape.
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This function can read DNA sequence files encoded in the Phylip sequential or
interleaved formats, Clustal, or (my preferred option) Fasta format. To load
sequences stored in a Fasta formatted file called “mySequences.fas” in the “R”
folder in your “My Documents”, use the following commands:

setwd("C:\\My Documents\\R")

dat <- read.dna("mySequences.fas", format="fasta")

dat

The first line (setwd()) sets the working directory for the R session. Every
other file that you read or write for the duration of your session will end up in
the directory specified here (unless you change it later in the session).

If all sequences in the alignment are the same length, read.dna() stores the
result as a matrix. The names of these sequences can be retrieved using the
command dimnames(dat). This command results in a list, the first element
of which contains the rownames (in this case the sequence names), the second
contains the column names (in this case empty). Thus, the names of sequences
can be obtained using dimnames(dat)[[1]].

If the alignment contains sequences of different lengths, read.dna() stores the
result as a list. When this occurs, the names of the sequences can be retrieved
using names(dat).

3.4 Getting sequences from GenBank

GenBank is the premier global depository for DNA sequences from all organisms.
It is a huge and exciting place to visit and is an extremely valuable resource for
doing all sorts of research that involves DNA.

Ape provides a function read.GenBank() which allows sequences to be down-
loaded from the system directly into a DNAbin object. The original version did
not include information such as species names or gene regions, so a modified
version is included in spider, read.GB(). This function works on a character
vector of GenBank accession numbers, and retrieves the records that correspond
to those numbers. As an example, the following code downloads 63 sequences
of antarctic springtails (Greenslade et al., 2011).

seq <- 732028:732089

seq <- paste("HQ", seq, sep="")

collembola <- read.GB(seq)

GenBank considers the DNA sequences it stores as individuals, so the data
downloaded from it are not necessarily aligned. To check properly, it is necessary
to export the sequences to an external alignment editor such as Mega (Tamura
et al., 2011), 4Peaks or Seaview (Guoy et al., 2010). However, spider provides
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a few tools for us to do a rough-and-ready job within R itself. First of all, we’ll
see how long the sequences are:

collLength <- sapply(collembola, length)

table(collLength)

614 618 619 624 630 631 640 658

1 1 2 1 1 10 1 45

The majority of sequences are 658 bp in length. We can then retain all the
sequences of this length in the alignment:

collembola <- collembola[which(collLength == 658)]

The function seeBarcode() produces a plot that represents each base as a
coloured vertical line corresponding to its nucleotide. We can use this to give
us an idea if these sequences are correctly aligned or not.

layout(matrix(1:6, ncol=1))

par(mar=c(0.5, 0, 0.5, 0))

apply(as.matrix(collembola)[sample(1:45,5),], MARGIN=1, FUN=seeBarcode)

seeBarcode(as.matrix(dolomedes)[sample(1:37, 1),1:658])

This code plots the sequences for 5 randomly sampled collembola and one
dolomedes. The results can be seen in Figure 1. The top 5 all show reasonably
similar patterns of variation. In particular, the blue, yellow & red, blue pattern
in the second quarter is consistent across all collembola sequences. Compared
to the dolomedes sequence, the difference is clear. For the purpose of the rest
of the document, I’ll assume the sequences in collembola are correctly aligned.
As mentioned above, however, in other analyses it will be necessary to determine
this with greater certainty.

3.5 Getting sequences from BOLD

The Barcode of Life Data System (Bold) is the data storage portal for a global
endeavour to catalogue the living world, using short (around 650 bp) DNA
sequences from standard gene regions (Ratnasingham & Hebert, 2007). The
bulk of this data comes from the mitochondrial gene region cytochrome c oxidase
I (COI). There are a lot of sequences in the database, but unfortunately only
a small portion of them are currently made public. Spider contains functions
for searching and downloading sequences from Bold. We will download some
sequences of Trigonopterus weevils from northern New Guinea rainforest that
show high levels of diversity (Riedel et al., 2010; Riedel, 2010)
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Figure 1: Five random collembola sequences and one from dolomedes to de-
termine if sequences are roughly in alignment
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nums <- search.BOLD("Trigonopterus")

weevils <- read.BOLD(nums)

The function search.BOLD() searches the database and retrieves the specimen
numbers for the records matching the search term. These numbers are then
used by read.BOLD() to download the sequences.

NB: At the moment, the eFetch system for downloading sequences (used by
read.BOLD) returns the same records three times. I emailed the good people at
Bold about it, but it is yet to be rectified. The line below will remove these
triplicate records, but hopefully the problem will be fixed in the near future.

weevils <- weevils[match(unique(names(weevils)), names(weevils))]

If you have a look at the weevils object, you’ll see that the sequence length is
given as 1,500 bp. Later on though, we’ll find that most of this length is made
up of missing data, so we’ll cut it down to size.

weevils <- as.matrix(weevils)[,1:700]

We now have an alignment that is only 670 bp long. Less than half of the
original size. Much better!

4 Species vectors

4.1 What they’re all about

Species vectors are the method used by spider to distinguish between the
species in the dataset. They are simply a character vector that is the same
length as the number of individuals in the dataset. The elements in the species
vector correspond to the individuals in the dataset, so order is very important.
The elements must also be consistent within each species, and unique between
them. In the terminology for this document, “species vector” refers to the whole
object, while “species index” refers to individual elements within it. I will reit-
erate here, that the term “species” can refer to any grouping structure that you
care to use. See Section 1.1.1 for more details on how “species” is used in this
document.

Examples of species vectors and different methods of creating them are discussed
below.

4.2 Extracting the species vector from pre-named labels

Most of the biologists I’ve come across name their sequences with a system
that incorporates the species identity into it in some way, shape or form. The
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anoteropsis and dolomedes datasets demonstrate two different methods of
incorporating the information into the labels.

4.2.1 anoteropsis species vector

head(dimnames(anoteropsis)[[1]])

[1] "Artoria_flavimanus" "Artoria_separata"

[3] "Anoteropsis_adumbrata_CO" "Anoteropsis_adumbrata_BP"

[5] "Anoteropsis_aerescens_MK" "Anoteropsis_aerescens_TK"

In anoteropsis the labels are made up of the genus and species separated
by an underscore. When more than one specimen per species is included, the
geographic locality is also included, separated again by an underscore. The
species vector can easily be constructed by splitting apart each element at the
underscore (using strsplit()), and pasting the first two parts together again
(using a combination of paste() and sapply()). To put it all together:

aa <- strsplit(dimnames(anoteropsis)[[1]], split="_")

anoSpp <- sapply(aa, function(x) paste(x[1], x[2], sep="_"))

head(anoSpp)

[1] "Artoria_flavimanus" "Artoria_separata" "Anoteropsis_adumbrata"

[4] "Anoteropsis_adumbrata" "Anoteropsis_aerescens" "Anoteropsis_aerescens"

4.2.2 dolomedes species vector

dimnames(dolomedes)[[1]]

[28] "aquatD054" "dondaD012D013D035" "dondaD034"

[31] "dondaD011" "dondaD032D050" "dondaD037"

[34] "dondaD052" "dondaD053" "schauD007"

The labels given to dolomedes are slightly different. The species names are
abbreviated at the beginning of the label, followed by the specimen numbers
possessing that haplotype. We can see though, that each species name is a
set length—5 characters long. This allows us to use substr() to extract this
information:

doloSpp <- substr(dimnames(dolomedes)[[1]], 1, 5)

doloSpp
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[1] "minor" "minor" "minor" "minor" "minor" "minor" "minor" "minor" "minor"

[10] "minor" "minor" "minor" "minor" "minor" "minor" "minor" "aquat" "aquat"

[19] "aquat" "aquat" "aquat" "aquat" "aquat" "aquat" "aquat" "aquat" "aquat"

[28] "aquat" "donda" "donda" "donda" "donda" "donda" "donda" "donda" "schau"

[37] "schau"

4.2.3 collembola species vector

names(collembola)

[1] "HQ732028 | Anurida_maritima"

[2] "HQ732029 | Ceratophysella_cf._gibbosa_CADH-2011"

[3] "HQ732030 | Ceratophysella_denticulata"

[4] "HQ732031 | Ceratophysella_denticulata"

[5] "HQ732032 | Ceratophysella_denticulata"

The species vector for the collembola sequences we downloaded from GenBank
can be retrieved in two ways. First, the harder way, which involves splitting the
names() of the alignment at the pipe:

collSpp <- strsplit(names(collembola), split=" \\| ")

collSpp <- sapply(collSpp, function(x) x[2])

[1] "Anurida_maritima"

[2] "Ceratophysella_cf._gibbosa_CADH-2011"

[3] "Ceratophysella_denticulata"

[4] "Ceratophysella_denticulata"

[5] "Ceratophysella_denticulata"

Note the double slash in front of the “|”. This is because the “|” is a restricted
character in R and the double slash tells it that we actually mean the character,
not the symbol.

The easy way is to make use of the attr() slot that read.GB() tacks on the
end of the object:

attr(collembola, "species")

Which results in exactly the same thing.
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4.2.4 weevils species vector

names(weevils)

[1] "GBCL5258-09|Trigonopterus_sp._spz" "GBCL5259-09|Trigonopterus_sp._sph"

[3] "GBCL5260-09|Trigonopterus_sp._sph" "GBCL5261-09|Trigonopterus_sp._spw"

[5] "GBCL5262-09|Trigonopterus_sp._spw" "GBCL5263-09|Trigonopterus_sp._spv"

[7] "GBCL5264-09|Trigonopterus_sp._spv" "GBCL5265-09|Trigonopterus_sp._spr"

To get the species vector from weevils, we could just grab the last part of the
name after splitting on the underscore:

weevilSpp1 <- strsplit(names(weevils), split="_")

weevilSpp1 <- sapply(weevilSpp1, function(x) x[3])

[1] "spz" "sph" "sph" "spw" "spw" "spv" "spv" "spr" "spr" "spz"

[11] "spb" "spae" "spae" "spw" "spw" "spv" "spv" "spav" "spav" "spc"

However, to make things a bit more informative I want to include the “Trigonopterus”
part as well, though I want to drop the “sp.” part. This will involve splitting
on both the pipe and the underscore:

weevilSpp2 <- strsplit(names(weevils), split="[\\|_]")

weevilSpp2 <- sapply(weevilSpp2, function(x) paste(x[2], x[4], sep="-"))

[1] "Trigonopterus-spz" "Trigonopterus-sph" "Trigonopterus-sph"

[4] "Trigonopterus-spw" "Trigonopterus-spw" "Trigonopterus-spv"

The function read.BOLD() has an attr() slot in the same way that read.GB()
has. However, with Bold’s current penchant for returning three of the same
thing, the command attr(weevils, "species") returns a vector three times
longer than the actual number of sequences. As species vectors need to be the
same length as the number of individuals in the analysis, this is not a good
thing.

4.3 Other useful functions for extracting names

The above examples have made extensive use of a few of the R’s key functions for
manipulating character strings. Other functions worth knowing about include
the grep() family of functions, including gsub(). These functions have the
ability to search for patterns in strings, and the latter has the ability to make
changes to the strings along the way.
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5 DNA barcoding

Spider and R provide an ideal platform for manipulating and analysing DNA
barcode data. DNA barcoding is a method of identifying of organisms using
standard gene regions—particularly COI—by comparing new sequences to a
database of barcodes from identified and vouchered specimens. The method was
first proposed by Hebert et al. (2003) and has since become a global endeavour,
with ongoing efforts to gather sequences and further develop the Bold database
(section 3.5). Research into the utility of DNA barcoding for identification
centres on determining the amount of sequence variation within and between
species, and whether accurate determinations can be made.

Calculating how effectively the DNA barcodes are able to discriminate species
is usually one of the key outputs of a DNA barcoding study. In theory, the
best way to do this would be to create a barcode reference library, and then
independently collect additional data to test it. However, more often reference
libraries are created and tested using the same data in a simulated identification
scenario. The assumption is that if more data were collected, they would have
a similar success rate. Testing the data involves treating each individual as an
unknown query in turn, using the fact that we already know the identity of the
individual from its species vector.

5.1 Summary statistics

Spider provides two functions for determining summary statistics from your
data. The first—dataStat()—calculates the number of species and genera
in the dataset, as well as the number of individuals sampled in each species.
Normally the genus vector (doloGen) would be constructed in the same way as
the species vectors (section 4), but here we already know there is only one genus
so don’t need to extract it from the taxon names.

The second function—seqStat()—determines sequence number and length,
and reports the amount of missing data inferred from the commonly used sym-
bols (“-, N, ?”). Except for “N”, This function does not report ambiguous bases
(e.g. “R, Y, S, M” etc) as missing data, although they are treated as such by
most other programs as well as Ape functions such as dist.dna(); here, we
refer the user to is.ambig()

doloGen <- rep("Dolomedes", length(doloSpp))

dataStat(doloSpp, doloGen)

Genera Species Min Max Median Mean Thresh

1 4 2 16 10 9 1
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The output is fairly easy to interpret. In the dolomedes dataset we have one
genus and four species. The minimum number of individuals per species is two,
while the maximum is 16. The median and mean number per species is 10
and 9 respectively. The “thresh” value shows how many species have fewer
individuals than the threshold (default of 5). In the dolomedes dataset, we
only have one species with less than 5 individuals representing it.

Looking at the dolomedes dataset with seqStat() is boring—all the sequences
are the same length, and there is no missing data. Therefore, we will have a
look at the weevils dataset:

seqStat(weevils)

Min Max Mean Median Thresh

479 646 635 640 1

The minimum sequence length is 479 bp, while the maximum is 646. The mean
and median lengths are 635 and 640 respectively, and we have one sequence that
is below the default threshold value of 500 bp.

5.2 Distance measures of identification success

The following metrics are all based on the pairwise distance matrix between
sequences. This matrix can easily be created using the dist.dna() function
provided by Ape. The distance matrix can be calculated using various mod-
els of DNA evolution, ranging from straight raw distances, to complex models
involving a lot of parameters. The standard model of evolution used in DNA
barcoding studies is the Kimura 2-parameter model (K2P), which is one of the
more simple models available. Conveniently, this is the default model used
by dist.dna(). It is also important when using dist.dna(), to change the
pairwise.deletion option to TRUE, otherwise all sites with any missing data
will be deleted from all comparisons.

anoDist <- dist.dna(anoteropsis, pairwise.deletion = TRUE)

doloDist <- dist.dna(dolomedes, pairwise.deletion = TRUE)

5.2.1 Nearest neighbour

The nearest neighbour criterion nearNeighbour() simply finds the closest indi-
vidual to the target, and returns the species index for that individual. If there
is more than one individual that is closest to the target, the function returns
the species index of the major component of the group. The default result is a
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logical vector that tells you if the nearest species index is the same as the indi-
vidual being tested. If it is, the result is TRUE. If not, it’s FALSE. Setting the
names argument to TRUE returns the name of the nearest match instead, and
thus can be used to identify unknowns (subject to having tested the procedure
previously of course!). The result is tabulated to ease interpretation.

table(nearNeighbour(doloDist, doloSpp))

FALSE TRUE

1 36

5.2.2 BOLD identification criteria

The function threshID() mimics the “species identification” method used by
Bold. threshID() offers a threshold based criterion (default of 1%), looking at
all specimens within the threshold of the query. There are four possible outcomes
for each identification query (i.e. specimen in the dataset): "correct"—all
matches within the threshold of the query are the same species; "incorrect"—
all matches within the threshold are different species to the query; "ambiguous"—
both correct and incorrect species are within the threshold; "no id"—no matches
were found to any individual within the threshold .

table(threshID(anoDist, anoSpp))

correct incorrect no id

11 2 20

5.2.3 Meier’s best close match

Meier’s best close match (Meier et al., 2006) is another distance-based analy-
sis, similar to nearNeighbour(), but it incorporates a threshold (default value
of 1%). Like threshID(), the same four identification categories are given
("correct, incorrect, ambiguous, no id"), but critically, this function only
operates upon the single nearest-neighbour match, rather than all matches
within the threshold (as with threshID()). The ambiguous result would ap-
ply when there are more than one equally close match of different species (but
including the correct species).

table(bestCloseMatch(anoDist, anoSpp))

correct incorrect no id

11 2 20
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5.2.4 Threshold optimisation

While the 1% threshold used by Bold is often a good rule of thumb, it may not
always be appropriate to every dataset, and identification success can sometimes
be increased if a better threshold given the data can be found (Meyer & Paulay,
2005). The function threshOpt() provides the basis for this analysis. The
function returns the number of true positive, false negative, false positive, and
true negative identifications at a given threshold, plus the cumulative error (false
negative + false positive). Importantly, for data where unsampled species are
likely to be encountered, optimising the threshold can guard against erroneously
identifying these unsampled species as species currently present in the reference
library.

threshOpt(doloDist, doloSpp, thresh = 0.01)

Threshold True neg True pos False neg

0.01 0.00 28.00 9.00

False pos Cumulative error

0.00 9.00

The threshold has a default of 0.01 (= 1%), but can be changed as the user
pleases. If the threshold is changed systematically, the optimum threshold value
can be determined by minimising the false positive (no conspecific matches
within threshold of query) and false negative identifications (non-conspecific
species within threshold distance of query)—i.e., cumulative error. The follow-
ing code shows how to create a range of threshold values (here 0.1% to 2%),
how to test these values, and how to plot the result (Figure 2).

threshVal <- seq(0.001,0.02, by = 0.001)

sens <- lapply(threshVal, function(x) threshOpt(doloDist, doloSpp, thresh = x))

sensMat <- do.call(rbind, sens)

barplot(t(sensMat)[4:5,], names.arg=paste((sensMat[,1]*100), "%"))

From the figure we can see that the optimum threshold for the dolomedes

dataset is between 0.5% and 0.8% K2P distance. By looking at sensMat, we
confirm that these thresholds have the lowest cumulative error at 1, and that
the default 1% is way off the mark in predicting false positive identifications.

Threshold True neg True pos False neg False pos Cumulative error

[1,] 0.001 0 0 0 37 37

[2,] 0.002 0 21 0 16 16

[3,] 0.003 0 31 0 6 6

[4,] 0.004 0 34 0 3 3

[5,] 0.005 0 36 0 1 1
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Figure 2: Barplot showing the false positive (light grey) and false negative (dark
grey) rate of identification of Dolomedes species as pre-set thresholds change.
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[6,] 0.006 0 36 0 1 1

[7,] 0.007 0 36 0 1 1

[8,] 0.008 0 36 0 1 1

[9,] 0.009 0 33 4 0 4

[10,] 0.010 0 28 9 0 9

An experimental new function for optimising threshold values is localMinima().
This method creates a density object from the distance matrix, and then infers
where a dip in the density of genetic distances indicates the transition between
intra- and inter-specific distances. A key advantage of this method, is that
unlike threshOpt(), this method does not require prior knowledge of species
identity to get an indication of potential threshold values.

Here localMinima() suggests a threshold of 0.7%, which is entirely consistent
with the results above using threshOpt(). We would like to note, however,
that localMinima() has not yet been fully tested, but has so far yielded reliable
results. We recommend further exploration of the method.

doloThresh <- localMinima(doloDist)

doloThresh$localMinima[1] *100

plot(doloThresh)

[1] 0.7154469

5.2.5 The barcoding gap

The “barcoding gap” (Meyer & Paulay, 2005) is an important concept in DNA
barcoding. It is the assumption that the amount of genetic variation within
species is smaller than the amount of variation between species. This allows
the two to be distinguished. As pointed out by Meier et al. (2008), the barcode
gap should be calculated using the smallest, rather than the mean interspecific
distances. Spider generates two statistics for each individual in the dataset,
the furthest intraspecific distance among its own species—maxInDist() and the
closest, non-conspecific (i.e., interspecific distance)—nonConDist(). Note that
the distances are converted to percentages (multiply by 100).

inter <- nonConDist(anoDist, anoSpp) *100

intra <- maxInDist(anoDist, anoSpp) *100

length(which(inter-intra <= 0))

When there is no barcode gap, this is shown by a zero or negative difference when
the maximum intraspecific distance (intra) is subtracted from the minimum
interspecific distance (inter). When we use length() and which() to ask how
many times this occurred in our dataset, we find that this was the case on three
occasions.
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length(which(inter-intra <= 0))

[1] 3

What we may also want to do, is provide a graphical representation of the bar-
code gap so we can see exactly how big the differences are (Figure 3). The
following code provides a very informative and pretty figure, but more impor-
tantly it gives us a tantalising glimpse into R’s potential for data manipulation
and plotting.

bnd <- cbind(data.frame(inter, intra))

ord <- bnd[order(bnd$inter),]

plot(ord$inter, type="n", ylab="Percent K2P distance", xlab="Individual")

segCol <- rep("gray50", length(ord$inter))

segCol[ord$inter-ord$intra < 0] <- "red"

segments(x0=1:length(ord$inter), y0=ord$inter, y1=ord$intra, col=segCol, lwd=6)

5.3 Tree-based measures

5.3.1 Species monophyly

The species monophyly criterion determines if each species is monophyletic over
a neighbour-joining (NJ) phylogram (tree). It uses a fairly simple definition
of monophyly—search for clades with the same number of tips as there are
species members, and see if they match. Singletons (species represented by only
one individual) cause a headache. Obviously, they are either always or never
monophyletic depending on your point of view. The way that monophyly()

gets around this problem is by getting the user to tell it what the point of view
should be. The default is TRUE—singletons are monophyletic.

First we need to make and root our tree, and will here root our tree on its
longest branch (edge length).

anoTr <- nj(anoDist)

maxInt <- max(anoTr$edge.length[anoTr$edge[, 2] > length(anoTr$tip.label)])

nodeRoot <- anoTr$edge[which(anoTr$edge.length == maxInt), 2]

anoTrRoot <- root(anoTr, node = nodeRoot, resolve.root = TRUE)

Next we ensure the labels are the same as the species vector. Then we can test
for monophyly:

anoTrRoot$tip.label <- anoSpp

monophyly(anoTrRoot, anoSpp)

table(monophyly(anoTrRoot, anoSpp))
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Figure 3: Lineplot of the barcode gap for the 33 Anoteropsis spp. For each
individual in the dataset, the grey lines represent the furthest intraspecific dis-
tance (bottom of line value), and the closest interspecific distance (top of line
value). The red lines show where this relationship is reversed, and the closest
non-conspecific is actually closer to the query than its nearest conspecific, i.e.,
the situation where there is no barcoding gap.
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[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

FALSE TRUE

1 21

However, if you’ve looked at the anoteropsis dataset at all, you’ll know that
there are a number of singletons in this dataset. When we change the default
behaviour to consider singletons as FALSE, we get a rather different picture.

monophyly(anoTrRoot, anoSpp, singletonsMono=FALSE)

table(monophyly(anoTrRoot, anoSpp, singletonsMono=FALSE))

[1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

[13] TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

FALSE TRUE

16 6

Because the monophyly functions work on the species, rather than individual
level, this next code rescales the result reported in terms of the number of
individuals per species—i.e., if a species is monophyletic, then all its members
are also. This takes into account sampling per species, and makes the result
more comparable with the individual-query distance-based methods described
above.

monoR <- monophyly(anoTrRoot, anoSpp, singletonsMono=FALSE)

table(monoR[match(anoSpp, unique(anoSpp))], useNA = "ifany")

FALSE TRUE

18 15

5.3.2 Bootstrap monophyly

We also provide an extension to the measure of monophyly, by incorporating
the bootstrap support measure. Here we use the monophylyBoot() function
with the following options: minimum of 70% bootstrap support for a correct
identification, 1,000 replications, and codon based resampling for protein coding
loci. By default the trees created in the bootstrapping part of the function are
automatically rerooted along the longest branch (edge) length. The original tree
object should also be rooted by the user, either in the same way (below) or on
another group with the root() function.
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monoBoot <- monophylyBoot(anoTrRoot, anoSpp, anoteropsis,

singletonsMono = FALSE, reps = 1000, thresh = 0.7, block = 3)

monoBoot

$results

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

$BSvalues

[1] 0.000 0.000 0.447 0.921 0.000 0.000 0.000 0.122 0.000 0.000 0.000 0.000

[13] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.365 0.000 0.000

[25] 0.000 0.000 0.000 0.000 0.000 0.000 0.536 0.000

Here we are given two results from monophylyBoot(): the TRUE/FALSE report
for each species, plus the actual bootstrap values for each these. Like many
bootstrap analyses it can be lengthy to complete, and may also significantly
reduce the proportion of successful identifications. We can see this here from our
Anoteropsis data; lots of zeros, and there’s is not a single correct identification!

Results from monophylyBoot() can also be scaled and tabulated in the way as
for monophyly().

table(monoBoot$results[match(anoSpp, unique(anoSpp))], useNA = "ifany")

FALSE

33

5.3.3 Rosenberg’s probability of reciprocal monophyly

Frequently we get excited about a specimen being different from other samples
we have. Rosenberg’s probability of reciprocal monophyly offers a measure to
temper our excitement by bringing the sampling regime into the picture (Rosen-
berg, 2007). Rosenberg states: “especially for small samples, an observation of
monophyly for a set of lineages—even if strongly supported statistically—does
not necessarily indicate that the lineages are from a distinctive group. Here
I develop a test of the null hypothesis that monophyly is a chance outcome
of random branching”. This is a particularly useful function for investigating
support for cryptic species.

To carry out the test, a rooted neighbour joining tree is required (anoTrRoot).
We then can plot colours on all the nodes that are significant to the α = 0.05
level according to Rosenberg’s random model, but this significance level can be
changed (Rosenberg, 2007). We see in Figure 4, that very few of the nodes
are red (significantly monophyletic), indicating that monophyly of some species
may be due to chance, and that further sampling is required.
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anoRos <- rosenberg(anoTrRoot)

anoNodes <- anoRos < 0.05

anoLabs <- anoRos

anoLabs[anoNodes] <- "red"

anoLabs[!anoNodes] <- "grey"

plot(anoTr, cex=0.7)

nodelabels(pch=21, bg=anoLabs, node=as.numeric(names(anoLabs)), cex=2)

5.4 Singletons

As mentioned already, singletons (a species represented by only one individual)
can be a problem for barcoding analyses (Lim et al., 2011). When treating each
individual as an identification query, a singleton will not have a match available
in the dataset, so will either result in an “incorrect” or “no identification”—not a
good result. Until databases have complete taxon coverage, singletons are likely
to occur, and a real unknown specimen has a chance of not having a conspecific
represented in the reference library. If your data contain a number of singleton
species, it is worth additionally analysing it with the singletons removed. This
will give a better identification success rate, and may be more representative of
how the data may behave once fully sampled.

Spider can effectively deal with the singleton issue, using the rmSingletons()

function. First, we can find out how many singletons are in the data. The
exclude = FALSE option reports these singletons, and this can be compared to
the number of species in the dataset.

length(rmSingletons(anoSpp, exclude = FALSE))

length(unique(anoSpp))

[1] 15

[1] 22

We can see that 15 of the 22 species in the dataset are singletons. Next, we can
exclude these singletons and only look at species with multiple individuals. To
illustrate, we will repeat the analysis of bestCloseMatch() with both singletons
included and excluded. It is important to note that the singletons are not
actually removed from the analysis, they are just excluded from the results; this
means the singleton individuals are still available as potential mis-matches for
other species.

excl <- rmSingletons(anoSpp, exclude = TRUE)

mbm <- bestCloseMatch(anoDist, anoSpp)

table(mbm[excl], useNA = "ifany")

table(bestCloseMatch(anoDist, anoSpp))
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Figure 4: Rosenberg’s probability of reciprocal monophyly for Anoteropsis spp.
Red nodes are significant to α = 0.05.
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correct incorrect no id

11 1 6

correct incorrect no id

11 2 20

We see here a huge improvement in identification success with singletons omitted
(top output); there’s one less “incorrect”, and 14 fewer “no identifications”.

6 Sliding windows

6.1 The basic idea

The principle of sliding window analysis is fairly simple—a DNA alignment is
divided up into multiple smaller fragments throughout the length of the region in
question. We can then assess different types of information content though the
alignment, measure nucleotide diversity (Roe & Sperling, 2007), or investigate
phylogenetic character conflict (Cruickshank, 2011).

The spider function slidingWindow() provides the base for conducting sliding
window analyses.

anoWin <- slidingWindow(anoteropsis, width=50, interval=1)

length(anoWin)

[1] 359

slidingWindow() takes an alignment and slices it into pieces of width bp each,
each piece separated by interval bp from the one before it. The result is a big
list of DNAbin objects ready and waiting to be analysed, as can be seen here:

anoWin[[1]]

33 DNA sequences in binary format stored in a matrix.

All sequences of same length: 50

Labels: Artoria_flavimanus Artoria_separata Anoteropsis_adumbrata_CO

Anoteropsis_adumbrata_BP Anoteropsis_aerescens_MK Anoteropsis_aerescens_TK ...

Base composition:

a c g t

0.264 0.142 0.137 0.458
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6.2 Conducting analyses

If, for example, we wanted to see the change in GC content across the anoteropsis
sequence, we can sapply() the Ape command GC.content() across our win-
dows:

anoGC <- sapply(anoWin, GC.content)

head(anoGC)

[1] 0.2787879 0.2775758 0.2575758 0.2575758 0.2763636 0.2703030

If we plot the results of anoGC, we get Figure 5.

6.3 The magic of slideAnalyses

A number of the most useful analyses for determining the optimum region for
designing mini-barcodes (Meusnier et al., 2008) have been implemented in the
slideAnalyses() function. This function does the whole shebang from creating
the windows, to conducting the analyses. The result is a massive list detailing
the data from each window.

anoAna <- slideAnalyses(anoteropsis, anoSpp, width=50, interval="codons",

distMeasures=TRUE, treeMeasures=TRUE)

First up: the arguments. anoteropsis is our DNAbin object containing our
sequences, anoSpp is our species vector, width=50 is the desired width of the
windows in question, "codons" is a fancy way of getting an interval of 3 be-
tween our windows, distMeasures=TRUE indicates that we want to calculate
metrics based on a Kimura 2-parameter distance matrix for each window, and
treeMeasures=TRUE indicates that we want to calculate metrics based on a
neighbour-joining tree monophyly from the distance matrix above. The default
is that distMeasures=TRUE and treeMeasures=FALSE because the latter takes
a lot more time to compute than the former.

If we have a look at the object created by the function above, we get something
fairly nasty:

str(anoAna)

List of 13

$ win_mono_out : num [1:120] 0.864 0.864 0.909 0.909 0.864 ...

$ comp_depth_out: num [1:120] 0.588 0.471 0.471 0.471 0.353 ...

$ comp_out : num [1:120] 0.355 0.29 0.29 0.29 0.226 ...
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Figure 5: Average GC content of 50 bp windows across Anoteropsis spp. se-
quences
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$ pos_tr_out : num [1:120] 1 4 7 10 13 16 19 22 25 28 ...

$ noncon_out : num [1:120] 0.333 0.394 0.212 0.212 0.303 ...

$ nd_out : num [1:120] 8 9 7 6 5 6 6 8 9 9 ...

$ zero_out : num [1:120] 0.0303 0.0398 0.0265 0.0246 0.036 ...

$ dist_mean_out : num [1:120] 0.0742 0.0741 0.0804 0.083 0.0796 ...

$ pos_out : num [1:120] 1 4 7 10 13 16 19 22 25 28 ...

$ dat_zero_out : num 0

$ boxplot_out : logi FALSE

$ distMeasures : logi TRUE

$ treeMeasures : logi TRUE

- attr(*, "class")= chr "slidWin"

win_mono_out is the proportion of species that are monophyletic. The closer
to 1 this number gets, the more species are monophyletic. comp_out and
comp_depth_out compare the clades of the trees in the window to the trees
made from the full dataset. The difference is that comp_depth_out considers
only the clades that are closer to the tips of the tree than the median node
depth, while comp_out looks at all of them. pos_out is the position of each
window (in bp) from the start of the sequence. Occasionally, trees might not
be able to be made if there is too much missing data, and pos_tr_out records
the position of windows from which trees were made. noncon_out gives the
proportion of non-conspecific distances that are 0, i.e., no difference between
species. Ideally, this number would be 0 (where every species could be differen-
tiated from one another). nd_out summarises nucleotide diagnostic sites (i.e.,
pure, simple, characteristic attributes) for each and all species; handy for primer
design. zero_out is the proportion of cells in the distance matrix which have
a distance of 0, and can be compared with dat_zero_out which is the same
proportion in the full dataset. The closer zero_out is to dat_zero_out, the
better. dist_mean_out is the mean of the distance matrix. Usually, it is best
if this number is large. Finally, the last three objects in the list are used by
plot() in creating the plots described below.

All the information above can be presented graphically using the plot command
to produce Figure 6:

plot(anoAna)

Starting at the top left of Figure 6, we have the plot of the mean distance
(dist_mean_out). We see that this is at its greatest at the 200 bp position, and
at its lowest around 150 bp. Next one down the column, we have the proportion
of zero cells in the distance matrix (zero_out). Once again, this is minimised
around 200 bp and is at its highest at 150 bp. The unbroken horizontal line
crossing the y-axis at 0 is the proportion of zero cells in the distance matrix
created from the full dataset (dat_zero_out). At the bottom of the first column,
we have the sum of diagnostic nucleotide positions for all species (nd_out). The
top right plot displays the proportion of zero non-conspecific distances, which
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Figure 6: Results of several analyses across the COI sequences of Anoteropsis
spp. See text for more details.
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find their minimum at 200 bp, but is greatest (a scary 0.8) around 100 bp. The
middle right plot shows the proportion of clades that are identical between the
windows and the full dataset (all nodes), and is pretty high at 200 bp and low at
110–150 bp. Finally, at the bottom right we have the proportion of species that
are monophyletic. Unlike previous measures, it appears that the 50 bp mark is
best (though 200 bp is fairly respectable), but 140 is still in the doldrums. All
in all, these plots consistently indicate that the best region for creating 50 bp
mini-barcodes is around the 200 bp mark.

The information can also be shown as a table that ranks the windows, showing
by default the top 10 windows:

rankSlidWin(anoAna)

position mean_distance zero_noncon zero_distances diag_nuc monophyly

67 199 0.10636352 0.1212121 0.01136364 7 0.8636364

66 196 0.10495195 0.1212121 0.01136364 6 0.8636364

63 187 0.10448748 0.1212121 0.01136364 7 0.8636364

68 202 0.10347462 0.1212121 0.01136364 7 0.8636364

65 193 0.10222185 0.1212121 0.01136364 7 0.8636364

64 190 0.10215716 0.1212121 0.01136364 7 0.8636364

69 205 0.10059984 0.1212121 0.01136364 7 0.8636364

60 178 0.09360184 0.2727273 0.01704545 7 0.8181818

62 184 0.09350650 0.2727273 0.01704545 7 0.8181818

61 181 0.09210280 0.2727273 0.01704545 6 0.8181818

clade_comparison clade_comp_shallow

67 0.3870968 0.5882353

66 0.3870968 0.5882353

63 0.3548387 0.5294118

68 0.3870968 0.5882353

65 0.3225806 0.5294118

64 0.3225806 0.5294118

69 0.3870968 0.5882353

60 0.3225806 0.4705882

62 0.2903226 0.4117647

61 0.2903226 0.4117647

This shows the same conclusion that we drew from the graphical representation
of the data, namely that the windows around the 200 bp mark are particularly
good by most of the criteria. The default behaviour of rankSlidWin() is that it
returns the best window sorted on highest mean distance, but the other criteria
can be used to rank the windows. See the help page of rankSlidWin() for more
details.
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6.4 Plots of boxes

Another way of looking at the variation across the sequences is by plotting
boxplots that show the distribution of pairwise genetic distances of each window.
This can be done by using the function slideBoxplots(). This function has
three methods that be used. "overall" shows a single boxplot that represents
the whole distance matrix, "interAll" separates the distances into intra- and
inter-specific distances and plots a boxplot of each. This differs from "nonCon"

(the default) in that "nonCon" restricts the inter-specific distances to only the
nearest non-conspecific distance for each individual in the dataset.

anoBox <- slideBoxplots(anoteropsis, anoSpp, 50, interval="codons",

method="nonCon")

plot(anoBox)

When plotted, this function produces the graphic shown in Figure 7. Unfortu-
nately, there is very little difference between the intra- and interspecific distances
at the 50 bp window size. Even the windows around the 200 bp position dis-
play significant overlap between the two measures, showing that there is no
“barcoding gap” with this size of DNA fragment.

To look at a more conventional example of the barcoding gap we can have a
look at the weevils dataset (Figure 8):

weevilsBox <- slideBoxplots(weevils, weevilSpp1, 50, interval="codons",

method="nonCon")

plot(weevilsBox)

7 Conclusion

This tutorial gives an introduction the the usage of some of the functions imple-
mented in spider, particularly with regards to its sliding window capabilities
and use in DNA barcoding research. Spider is an actively developing package,
and it is intended that further analyses will be developed within it, with an es-
pecial focus on the analysis of conflict in phylogenetic data, checks of alignment
quality, tools for studying ancient DNA and further analyses for morphological
and categorical data. As the package matures, it is hoped that spider will be
a valuable addition to toolkit of R packages available for use in the field of
taxonomy, systematics and molecular biology. For more information, or to get
involved in the development of the package, please visit our site on R-Forge,
http://spider.r-forge.r-project.org/.
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Figure 7: Boxplots showing the distribution of the nearest non-conspecific (or-
ange) and intraspecific (blue) distances across the COI sequences of Anoteropsis
spp.
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Figure 8: Boxplots showing the distribution of the nearest non-conspecific
(orange) and intraspecific (blue) distances across the COI sequences of
Trigonopterus spp. weevils
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